Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Epidemiol Community Health ; 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2108301

RESUMEN

BACKGROUND: The early COVID-19 pandemic in Scotland-defined as the era before widespread access to vaccination and monoclonal antibody treatment-can be characterised into three distinct waves: March-July 2020, July 2020-April 2021 and May-August 2021. Each wave was met with various societal restrictions in an effort to reduce disease transmission and associated morbidity and mortality. Understanding the epidemiology of infections during these waves can provide valuable insights into future pandemic planning. METHODS: Scottish RT-PCR testing data reported up until 8 August 2021, the day prior to most restrictions being lifted in Scotland, were included. Demographic characteristics including age, sex and social deprivation associated with transmission, morbidity and mortality were compared across waves. A case-control analysis for each wave was then modelled to further compare risk factors associated with death over time. RESULTS: Of the 349 904 reported cases, there were 18 099, 197 251 and 134 554 in waves 1, 2 and 3, respectively. Hospitalisations, intensive care unit admissions and deaths appeared highest in wave 2, though risk factors associated with COVID-19 death remained similar across the waves. Higher deprivation and certain comorbidities were associated with higher deaths in all waves. CONCLUSIONS: Despite the higher number of cases reported in waves 2 and 3, case fatality rates were lower: likely a combination of improved detection of infections in younger age groups, introduction of social measures and vaccination. Higher social deprivation and comorbidities resulted in higher deaths for all waves.

2.
BMC Med ; 19(1): 51, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1094033

RESUMEN

BACKGROUND: The objective of this study was to investigate the relation of severe COVID-19 to prior drug prescribing. METHODS: Severe cases were defined by entry to critical care or fatal outcome. For this matched case-control study (REACT-SCOT), all 4251 cases of severe COVID-19 in Scotland since the start of the epidemic were matched for age, sex and primary care practice to 36,738 controls from the population register. Records were linked to hospital discharges since June 2015 and dispensed prescriptions issued in primary care during the last 240 days. RESULTS: Severe COVID-19 was strongly associated with the number of non-cardiovascular drug classes dispensed. This association was strongest in those not resident in a care home, in whom the rate ratio (95% CI) associated with dispensing of 12 or more drug classes versus none was 10.8 (8.8, 13.3), and in those without any of the conditions designated as conferring increased risk of COVID-19. Of 17 drug classes postulated at the start of the epidemic to be "medications compromising COVID", all were associated with increased risk of severe COVID-19 and these associations were present in those without any of the designated risk conditions. The fraction of cases in the population attributable to exposure to these drug classes was 38%. The largest effect was for antipsychotic agents: rate ratio 4.18 (3.42, 5.11). Other drug classes with large effects included proton pump inhibitors (rate ratio 2.20 (1.72, 2.83) for = 2 defined daily doses/day), opioids (3.66 (2.68, 5.01) for = 50 mg morphine equivalent/day) and gabapentinoids. These associations persisted after adjusting for covariates and were stronger with recent than with non-recent exposure. CONCLUSIONS: Severe COVID-19 is associated with polypharmacy and with drugs that cause sedation, respiratory depression, or dyskinesia; have anticholinergic effects; or affect the gastrointestinal system. These associations are not easily explained by co-morbidity. Measures to reduce the burden of mortality and morbidity from COVID-19 should include reinforcing existing guidance on reducing overprescribing of these drug classes and limiting inappropriate polypharmacy. REGISTRATION: ENCEPP number EUPAS35558.


Asunto(s)
COVID-19/diagnóstico , COVID-19/epidemiología , Cuidados Críticos/tendencias , Polifarmacia , Psicotrópicos/efectos adversos , Índice de Severidad de la Enfermedad , Anciano , Anciano de 80 o más Años , COVID-19/inducido químicamente , Estudios de Casos y Controles , Comorbilidad , Relación Dosis-Respuesta a Droga , Prescripciones de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Psicotrópicos/uso terapéutico , Escocia/epidemiología
3.
Lancet Diabetes Endocrinol ; 9(2): 82-93, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-989524

RESUMEN

BACKGROUND: We aimed to ascertain the cumulative risk of fatal or critical care unit-treated COVID-19 in people with diabetes and compare it with that of people without diabetes, and to investigate risk factors for and build a cross-validated predictive model of fatal or critical care unit-treated COVID-19 among people with diabetes. METHODS: In this cohort study, we captured the data encompassing the first wave of the pandemic in Scotland, from March 1, 2020, when the first case was identified, to July 31, 2020, when infection rates had dropped sufficiently that shielding measures were officially terminated. The participants were the total population of Scotland, including all people with diabetes who were alive 3 weeks before the start of the pandemic in Scotland (estimated Feb 7, 2020). We ascertained how many people developed fatal or critical care unit-treated COVID-19 in this period from the Electronic Communication of Surveillance in Scotland database (on virology), the RAPID database of daily hospitalisations, the Scottish Morbidity Records-01 of hospital discharges, the National Records of Scotland death registrations data, and the Scottish Intensive Care Society and Audit Group database (on critical care). Among people with fatal or critical care unit-treated COVID-19, diabetes status was ascertained by linkage to the national diabetes register, Scottish Care Information Diabetes. We compared the cumulative incidence of fatal or critical care unit-treated COVID-19 in people with and without diabetes using logistic regression. For people with diabetes, we obtained data on potential risk factors for fatal or critical care unit-treated COVID-19 from the national diabetes register and other linked health administrative databases. We tested the association of these factors with fatal or critical care unit-treated COVID-19 in people with diabetes, and constructed a prediction model using stepwise regression and 20-fold cross-validation. FINDINGS: Of the total Scottish population on March 1, 2020 (n=5 463 300), the population with diabetes was 319 349 (5·8%), 1082 (0·3%) of whom developed fatal or critical care unit-treated COVID-19 by July 31, 2020, of whom 972 (89·8%) were aged 60 years or older. In the population without diabetes, 4081 (0·1%) of 5 143 951 people developed fatal or critical care unit-treated COVID-19. As of July 31, the overall odds ratio (OR) for diabetes, adjusted for age and sex, was 1·395 (95% CI 1·304-1·494; p<0·0001, compared with the risk in those without diabetes. The OR was 2·396 (1·815-3·163; p<0·0001) in type 1 diabetes and 1·369 (1·276-1·468; p<0·0001) in type 2 diabetes. Among people with diabetes, adjusted for age, sex, and diabetes duration and type, those who developed fatal or critical care unit-treated COVID-19 were more likely to be male, live in residential care or a more deprived area, have a COVID-19 risk condition, retinopathy, reduced renal function, or worse glycaemic control, have had a diabetic ketoacidosis or hypoglycaemia hospitalisation in the past 5 years, be on more anti-diabetic and other medication (all p<0·0001), and have been a smoker (p=0·0011). The cross-validated predictive model of fatal or critical care unit-treated COVID-19 in people with diabetes had a C-statistic of 0·85 (0·83-0·86). INTERPRETATION: Overall risks of fatal or critical care unit-treated COVID-19 were substantially elevated in those with type 1 and type 2 diabetes compared with the background population. The risk of fatal or critical care unit-treated COVID-19, and therefore the need for special protective measures, varies widely among those with diabetes but can be predicted reasonably well using previous clinical history. FUNDING: None.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Vigilancia de la Población , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Estudios de Cohortes , Cuidados Críticos/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Escocia/epidemiología , Adulto Joven
4.
BMJ ; 371: m3582, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-894848

RESUMEN

OBJECTIVE: To assess the risk of hospital admission for coronavirus disease 2019 (covid-19) among patient facing and non-patient facing healthcare workers and their household members. DESIGN: Nationwide linkage cohort study. SETTING: Scotland, UK, 1 March to 6 June 2020. PARTICIPANTS: Healthcare workers aged 18-65 years, their households, and other members of the general population. MAIN OUTCOME MEASURE: Admission to hospital with covid-19. RESULTS: The cohort comprised 158 445 healthcare workers, most of them (90 733; 57.3%) being patient facing, and 229 905 household members. Of all hospital admissions for covid-19 in the working age population (18-65 year olds), 17.2% (360/2097) were in healthcare workers or their households. After adjustment for age, sex, ethnicity, socioeconomic deprivation, and comorbidity, the risk of admission due to covid-19 in non-patient facing healthcare workers and their households was similar to the risk in the general population (hazard ratio 0.81 (95% confidence interval 0.52 to 1.26) and 0.86 (0.49 to 1.51), respectively). In models adjusting for the same covariates, however, patient facing healthcare workers, compared with non-patient facing healthcare workers, were at higher risk (hazard ratio 3.30, 2.13 to 5.13), as were household members of patient facing healthcare workers (1.79, 1.10 to 2.91). After sub-division of patient facing healthcare workers into those who worked in "front door," intensive care, and non-intensive care aerosol generating settings and other, those in front door roles were at higher risk (hazard ratio 2.09, 1.49 to 2.94). For most patient facing healthcare workers and their households, the estimated absolute risk of hospital admission with covid-19 was less than 0.5%, but it was 1% and above in older men with comorbidity. CONCLUSIONS: Healthcare workers and their households contributed a sixth of covid-19 cases admitted to hospital. Although the absolute risk of admission was low overall, patient facing healthcare workers and their household members had threefold and twofold increased risks of admission with covid-19.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Familia , Personal de Salud/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Neumonía Viral/epidemiología , Adolescente , Adulto , Anciano , Betacoronavirus , COVID-19 , Estudios de Cohortes , Comorbilidad , Femenino , Personal de Salud/clasificación , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Factores de Riesgo , SARS-CoV-2 , Escocia/epidemiología , Adulto Joven
5.
PLoS Med ; 17(10): e1003374, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-881135

RESUMEN

BACKGROUND: The objectives of this study were to identify risk factors for severe coronavirus disease 2019 (COVID-19) and to lay the basis for risk stratification based on demographic data and health records. METHODS AND FINDINGS: The design was a matched case-control study. Severe COVID-19 was defined as either a positive nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the national database followed by entry to a critical care unit or death within 28 days or a death certificate with COVID-19 as underlying cause. Up to 10 controls per case matched for sex, age, and primary care practice were selected from the national population register. For this analysis-based on ascertainment of positive test results up to 6 June 2020, entry to critical care up to 14 June 2020, and deaths registered up to 14 June 2020-there were 36,948 controls and 4,272 cases, of which 1,894 (44%) were care home residents. All diagnostic codes from the past 5 years of hospitalisation records and all drug codes from prescriptions dispensed during the past 240 days were extracted. Rate ratios for severe COVID-19 were estimated by conditional logistic regression. In a logistic regression using the age-sex distribution of the national population, the odds ratios for severe disease were 2.87 for a 10-year increase in age and 1.63 for male sex. In the case-control analysis, the strongest risk factor was residence in a care home, with rate ratio 21.4 (95% CI 19.1-23.9, p = 8 × 10-644). Univariate rate ratios for conditions listed by public health agencies as conferring high risk were 2.75 (95% CI 1.96-3.88, p = 6 × 10-9) for type 1 diabetes, 1.60 (95% CI 1.48-1.74, p = 8 × 10-30) for type 2 diabetes, 1.49 (95% CI 1.37-1.61, p = 3 × 10-21) for ischemic heart disease, 2.23 (95% CI 2.08-2.39, p = 4 × 10-109) for other heart disease, 1.96 (95% CI 1.83-2.10, p = 2 × 10-78) for chronic lower respiratory tract disease, 4.06 (95% CI 3.15-5.23, p = 3 × 10-27) for chronic kidney disease, 5.4 (95% CI 4.9-5.8, p = 1 × 10-354) for neurological disease, 3.61 (95% CI 2.60-5.00, p = 2 × 10-14) for chronic liver disease, and 2.66 (95% CI 1.86-3.79, p = 7 × 10-8) for immune deficiency or suppression. Seventy-eight percent of cases and 52% of controls had at least one listed condition (51% of cases and 11% of controls under age 40). Severe disease was associated with encashment of at least one prescription in the past 9 months and with at least one hospital admission in the past 5 years (rate ratios 3.10 [95% CI 2.59-3.71] and 2.75 [95% CI 2.53-2.99], respectively) even after adjusting for the listed conditions. In those without listed conditions, significant associations with severe disease were seen across many hospital diagnoses and drug categories. Age and sex provided 2.58 bits of information for discrimination. A model based on demographic variables, listed conditions, hospital diagnoses, and prescriptions provided an additional 1.07 bits (C-statistic 0.804). A limitation of this study is that records from primary care were not available. CONCLUSIONS: We have shown that, along with older age and male sex, severe COVID-19 is strongly associated with past medical history across all age groups. Many comorbidities beyond the risk conditions designated by public health agencies contribute to this. A risk classifier that uses all the information available in health records, rather than only a limited set of conditions, will more accurately discriminate between low-risk and high-risk individuals who may require shielding until the epidemic is over.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Estado de Salud , Hospitalización , Neumonía Viral/epidemiología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Estudios de Casos y Controles , Comorbilidad , Infecciones por Coronavirus/virología , Quimioterapia , Registros Electrónicos de Salud , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pandemias , Neumonía Viral/virología , Factores de Riesgo , SARS-CoV-2 , Escocia/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA